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1. INTRODUCTION 

Storage possibilities are negligible in most electric power networks, so demand and supply 

must be instantly balanced. One consequence is that transmission constraints and the way they 

are managed can have a large influence on market prices. The European Union’s regulation 

1228/2003 (amended in 2006) sets out guidelines for how congestion should be managed in 

Europe. System operators should coordinate their decisions and choose designs that are secure, 

efficient, transparent and market based.  

In this paper, we compare the efficiency and welfare distribution of three market designs 

that are in operation in real-time electricity markets: nodal, zonal and discriminatory pricing. 

Characteristics of the three designs are summarized in Table 1. The zonal market is special in that 

it has two stages: a zonal clearing and a redispatch. We show that in competitive markets without 

uncertainties the three designs result in the same efficient dispatch. However, zonal pricing with a 

market based redispatch (counter-trading) results in additional payments to producers in export-

constrained nodes, as they can make an arbitrage profit from price differences between the zonal 

market and the redispatch stage. This strategy is often referred to as the increase-decrease (inc-

dec) game. This is the first paper that proves these results for general networks with general 

production costs. Dijk and Willems (2011) are closest to our study.  However, their analysis is 

limited to two-node networks and linear production costs. The parallel study by Ruderer and Zöttl 

(2012) is also analyzing similar issues, but the redispatch of the zonal market that they consider is 

not market based, thus their model does not capture the increase-decrease game.   

 

   Table 1: Summary of the three congestion management techniques. 

Congestion  

management 

technique 

Considered 

transmission 

constraints 

Auction format 

Uniform-price Pay-as-bid 

Nodal All X  

Discriminatory All  X 

Zonal –stage 1 Inter-zonal X  

Redispatch –

stage 2 

Intra-zonal 
 X 
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1.1 Congestion management techniques   

Producers submit offers to real-time markets just before electricity is going to be produced 

and delivered to consumers. During the delivery period, the system operator accepts offers in 

order to clear the real-time market, taking transmission constraints into account. The auction 

design decides upon accepted offers and their payments. Nodal pricing or locational marginal 

pricing (LMP) acknowledges that location is an important aspect of electricity which should be 

reflected in its price, so all accepted offers are paid a local uniform-price associated with each 

node of the electricity network (Schweppe et al., 1988; Hogan, 1992; Chao and Peck, 1996; Hsu, 

1997). This design is used in Argentina, Chile, New Zealand, Russia, Singapore and in several 

U.S. states, e.g. Southwest Power Pool (SPP), California, New England, New York, PJM1 and 

Texas. Nodal pricing is not yet used inside the European Union. However, Poland has serious 

discussions about implementing this design.  

Under discriminatory pricing, where accepted offers are paid as bid, there is no uniform 

market price. Still, the system operator considers all transmission constraints when accepting 

offers, so there is locational pricing in the sense that production in import-constrained nodes can 

bid higher than production in export constrained nodes and still be accepted. Discriminatory 

pricing is used in Iran, in the British real-time market, and Italy has decided to implement it as 

well. A consequence of the pay-as-bid format is that accepted production is paid its stated 

production cost. Thus one (somewhat naïve) motivation for this auction format is that if 

producers would bid their true cost, then this format would increase consumers’ and/or the 

auctioneer’s welfare at producers’ expense. 

The third type of congestion management is zonal pricing. Markets which use this design 

consider inter-zonal congestion, but have a uniform market price inside each region, typically a 

country (continental Europe) or a state (Australia), regardless of transmission congestion inside 

the region. Denmark, Norway and Sweden2 are also divided into several zones, but this division 

is motivated by properties of the network rather than by borders of administrative regions. 3 

Britain is one zone in its day-ahead market, but uses discriminatory pricing in the real-time 

market. Initially the zonal design was thought to minimize the complexity of the pricing 
                                                 
1  PJM is the largest deregulated wholesale electricity market, covering all or parts of 13 U.S. states and the District of Columbia. 
2 The Swedish government introduced four zones in Sweden from November 2011, as a result of an antitrust settlement between the European 
commission and the Swedish network operator (Sadowska and Willems, 2012). 
3 The optimal definition of zones for a given network is studied by e.g. Stoft (1997), Bjørndal and Jörnsten (2001) and Ehrenmann and Smeers 
(2005). 
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settlement and politically it is sometimes more acceptable to have just one price in a 

country/state. 4  Originally, zonal pricing was also used in the deregulated electricity markets of 

the U.S., but they have now switched to nodal pricing, at least for generation. One reason for this 

change in the U.S. is that zonal pricing is, contrary to its purpose, actually quite complex and the 

pricing system is not very transparent under the hood. The main problem with the zonal design is 

that after the zones of the real-time market have been cleared the system operator needs to order 

redispatches if transmission lines inside a zone would otherwise be overloaded. Such a redispatch 

increases accepted supply in import constrained nodes and reduces it in export constrained nodes 

in order to relax intra-zonal congestion. There are alternative ways of compensating producers for 

their costs associated with these adjustments. The compensation schemes have no direct influence 

on the cleared zonal prices, but indirectly the details of the design may influence how producers 

make their offers.  

The simplest redispatch is exercised as a command and control scheme: the system operator 

orders adjustments without referring to the market and all agents are compensated for the 

estimated cost associated with their adjustments (Krause, 2005). In this paper we instead consider 

a market oriented redispatch, also called counter-trading. This zonal design is used in Britain, in 

the Nordic countries and it was used in the old Texas design.5 In these markets a producer’s 

adjustments are compensated in accordance with his stated costs as under discriminatory pricing. 

Thus the market has a zonal price in the first stage and pay-as-bid pricing in the second stage.  

We consider two cases: a single shot game where the same bid curve is used in both the first and 

second stage, and a dynamic game where firms are allowed to submit new bid curves in the 

second stage. The dynamic model is appropriate if, for example, the first stage represents the day-

ahead market and the second stage represents the real-time market.  

 

1.2 Comparison of the three market designs 

Our analysis considers a general electricity network, which could be meshed, where nodes 

are connected by capacity constrained transmission lines. We study an idealized market where 

                                                 
4 Policy makers’ and the industries’ critique of the nodal pricing design is summarized, for example, by Alaywan  et  al. (2004), de Vries et al. 
(2009), Leuthold et al. (2008), Oggioni and Smeers (2012) and Stoft (1997). 
5 Note that Britain is different in that it has pay-as-bid pricing for all accepted bids in the real-time market. The Nordic real-time markets only use 
discriminatory pricing for redispatches; all other accepted bids are paid a zonal real-time price.   
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producers’ costs are common knowledge, and demand is certain and inelastic. There is a 

continuum of infinitesimally small producers that choose their offers in order to maximize their 

individual payoffs.6 Subject to the transmission constraints, the system operator accepts offers to 

minimize total stated production costs, i.e. it clears the market under the assumption that offers 

reflect true costs. We characterize the Nash equilibrium (NE) of each market design and compare 

prices, payoffs and efficiencies for the three designs.  

In the nodal pricing design, we show that producers maximize their payoffs by simply 

bidding their marginal costs. Thus, in this case, the accepted offers do in fact maximize short-run 

social welfare. We refer to these accepted equilibrium offers as the efficient dispatch and we call 

the clearing prices the network’s competitive nodal prices. We compare this outcome with 

equilibria in the alternative market designs. 

For fixed offers, the system operator would increase its profit at producers’ expense by 

switching from nodal to discriminatory pricing. But we show that even if there are infinitely 

many producers in the market, discriminatory pricing encourages strategic bidding among 

inframarginal production units. They can increase their offer prices up to the marginal price in 

their node and still be accepted. 7   In the Nash equilibrium of the pay-as-bid design, accepted 

production is the same as in the efficient dispatch and all accepted offers are at the network’s 

competitive nodal prices. Thus, market efficiency and payoffs to producers and the system 

operator are the same as for nodal pricing. As payoffs are identical in all circumstances, this also 

implies that the long-run effects are the same in terms of investment incentives.  

Under our idealized assumptions, the zonal market with counter-trading has the same 

efficient dispatch as in the two other market designs. We also show that producers buy and sell at 

the competitive nodal price in the counter-trading stage. Still producers’ payoffs are larger under 

zonal pricing at consumers’ and the system operator’s expense. The reason is that the two-stage 

clearing gives producers the opportunity to either sell at the zonal price or at the discriminatory 

equilibrium price in the second stage, whichever is higher. In addition, even when they are not 

producing any energy, production units in export-constrained nodes can make money by selling at 

the uniform zonal price and buying back the same amount at the discriminatory price, which is 

                                                 
6 The idea to calculate Nash equilibria for a continuum of agents was first introduced by Aumann (1964). The theory was further developed by 
Green (1984).   
7 Related results have been found for theoretical and empirical studies of discriminatory auctions (Holmberg and Newbery, 2010; Evans and 
Green, 2004). However, previous studies of discriminatory pricing have not taken the network into account.      
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lower, in the second stage. This increase-decrease game has been observed during the California 

electricity crisis (Alaywan et al., 2004), it destroyed the initial PJM zonal design, and is present 

in the UK in the form of large payments to Scottish generators (Neuhoff, Hobbs and Newbery, 

2011). Our results show that inc-dec gaming is an arbitrage strategy, which cannot be removed by 

improving competition in the market. If it is a serious problem, it is necessary to change the 

market design as in the U.S.  We show how producers’ profits from the inc-dec game can be 

calculated for general networks, including meshed networks. Our results for the zonal market are 

the same for the static game, where the same offer is used in the two stages, and in the dynamic 

game, where firms are allowed to make new offers in the counter-trading stage.  

Additional payments to producers in the zonal market cause long-run inefficiencies; 

producers overinvest in export-constrained nodes (Dijk and Willems, 2011).8 Zonal pricing also 

leads to inefficiencies in the operation of inflexible plants with long ramp-rates, which are not 

allowed to trade in the real-time market. Related issues are analyzed by Green (2007). In practice 

nodal pricing is considered superior to the other designs, as it ensures efficient allocation in a 

competitive market also for uncertain demand and intermittent wind power production; an 

advantage which is stressed by Green (2010).   

The organization of the paper is as follows. In Section 2 we present a simple two–node 

example illustrating the equilibrium under the nodal pricing. Section 3 discusses our model and in 

Section 4 we present an analysis of the three congestion management designs. In section 5, 

market equilibria for the discriminatory and zonal pricing designs are discussed with the means 

of a simple example. The paper is concluded in section 6, which also briefly discusses how more 

realistic assumptions would change our results. Three technical lemmas and all proofs are placed 

in the Appendix. 

 

2. EXAMPLE – NODAL PRICING 

In the following section we describe a simple example of bidding under nodal pricing and 

the equilibrium outcome of this design. We consider a two-node network with one constrained 

transmission-line in-between. In both nodes producers are infinitesimally small and demand is 

                                                 
8 Ruderer and Zöttl (2012) show that zonal pricing in addition leads to inefficient investments in transmission-lines, at least if the zonal market is 
regulated such that redispatches are compensated according to producers’ true costs. 
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dispatched. All accepted production will be paid the nodal price of the node. The dispatch leads 

to a socially efficient outcome. We use the superscript N to designate this outcome. We call nodal 

production and nodal prices of competitive and socially efficient outcomes, the network’s 

efficient dispatch and the network’s competitive nodal prices, respectively. 

As our analysis will show, the offers in Figure 1 cannot constitute NE in the other two 

designs. For discriminatory pricing it will be profitable for inframarginal offers to increase their 

price up to the marginal offer of the node. For zonal pricing, the average demand in the two zones 

would be 11.5 MW, so 11.5 MW would be accepted in each node at the zonal price 11.5 for the 

offers in Figure 1. Production would be adjusted in the redispatch stage. However, as it applies 

discriminatory pricing, it would not influence the payoff of producers that bid their true marginal 

cost. Thus producers in the export-constrained node 1 would find it profitable to change their 

offers downwards. They would like to sell as much as possible at the zonal price and then buy it 

back at a lower price in the redispatch stage. Producers in the import constrained node 2 would 

shift their offers upwards as in the pay-as-bid design, so that all production that is dispatched in 

the redispatch stage is accepted at the marginal offer of the import constrained node.   

 

3. MODEL 

The model described in this section is used to evaluate and compare three market oriented 

congestion management techniques: nodal pricing, pay-as-bid and zonal pricing with counter-

trading. We study a general electricity network (possibly meshed) with n nodes that are connected 

by capacity constrained transmission lines. Demand in a node  ni ,,1  is given by Di, which 

is certain and inelastic up to a reservation price p . C’i(qi) is the marginal cost of producing qi 

units of electricity in node i. We assume that the marginal cost is common knowledge, continuous 

and strictly increasing up to (and beyond) the reservation price. 9  We let iq >0 be the relevant 

total production capacity in node i, which has a marginal cost at the reservation price or lower. 

Thus we have by construction that  ii qCp ' . Capacity with a marginal cost above the 

reservation price will not submit any offers. 
                                                 
9 Note that it is possible for a producer to generate beyond the rated power of a production unit. However, it heats up the unit and shortens its 
lifespan. Thus the marginal cost increases continuously beyond the rated power towards a very high number (above the reservation price) where 
the unit is certain to be permanently destroyed during the delivery period.  Edin (2007) uses a similar marginal cost curve with a similar motiva-
tion.  
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In each node there is a continuum of infinitesimally small producers. Each producer in the 

continuum of node i is indexed by the variable  1,0ig . For simplicity, we assume that each 

producer is only active in one node. Without loss of generality, we also assume that producers are 

sorted with respect to their marginal cost in each node, such that a producer with a higher gi value 

than another producer in the same node also has a higher marginal cost. The relevant total 

production capacity iq  in a node i is divided between the continuum of producers, such that firm 

gi in node i has the marginal cost   iii qgC ' . Similarly, we let  iii qgô  represent the offer price of 

firm gi in node i.   

The system operator’s clearing of the real-time market must be such that local net-supply 

equals local net-exports in each node and such that the physical constraints of the transmission 

network are not violated. Any set  n
iiq 1  of nodal production that satisfies these feasibility 

constraints is referred to as a feasible dispatch. We say that a dispatch is locally efficient if it 

minimizes the local production cost in each node for given nodal outputs  n
iiq 1 , i.e. production 

units in node i are running if and only if they have a marginal cost at or below  ii qC ' . We 

consider a set of demand outcomes  n

iiD 1 , such that there is at least one feasible dispatch. In 

principle the network could be a non-linear AC system with resistive losses. But to ensure a 

unique cost efficient dispatch we restrict the analysis to cases where the feasible set of dispatches 

is convex. Hence, if two dispatches are possible, then any weighted combination of the two 

dispatches is also feasible. The feasible set of dispatches is for example convex under the DC 

load flow approximation of general networks with alternating current (Chao and Peck, 1996). 10 

The system operator sorts offers in ascending order in case a nodal offer curve  ii qô would 

be locally decreasing. We denote the sorted nodal offer curve by  ii qo . The system operator then 

chooses a feasible dispatch in order to minimize the stated production cost or equivalently to 

maximize 

                                                 
10 Alternating currents (AC) result in a non-linear model of the network. Hence, in economic studies this model is often simplified by a linear 
approximation called the direct current (DC) load flow approximation. In addition to Chao and Peck (1996), it is used, for example, by Schweppe 
et al. (1988), Hogan (1992), Bjørndal and Jörnsten (2001, 2005, 2007), Glachant and Pignon (2005), Green (2007) and Adler et al. (2008).   
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       
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0 

,         (1) 

which maximizes social welfare if offers would reflect the true costs. Thus, we say that the 

system operator acts in order to maximize the stated social welfare subject to the feasibility 

constraints.  

In a market with nodal pricing the system operator first chooses the optimal dispatch as 

explained above. All accepted offers in the same node are paid the same nodal price. The nodal 

price is determined by the node’s marginal price, i.e. the highest accepted offer price in the node. 

We say that marginal prices or nodal prices are locally competitive if the dispatch is locally 

efficient and the marginal price in each node equals the highest marginal cost for units that are 

running in the node. An offer at the marginal price of its node is referred to as a marginal offer.  

In the discriminatory pricing design all accepted offers are paid according to their offer price. 

This gives producers incentives to change their offers and thereby state their costs differently. 

Still, the dispatch is determined in the same way; by minimizing stated production cost. In the 

zonal pricing design with counter-trading, the market is cleared in two stages. First the system 

operator clears the market disregarding the intra-zonal transmission constraints (constraints inside 

zones). Next, in case intra-zonal transmission lines are overloaded after the first clearing, there is 

a redispatch where the system operator increases accepted production in import constrained 

nodes and reduces it in export constrained nodes. Section 4.3 explains our zonal pricing model in 

greater detail.  

 

4.  ANALYSIS 

We start our game-theoretical analysis of the three market designs by means of three 

technical results that we will use in the proofs that follow.  

 

Lemma 1. Assume that offers are shifted upwards (more expensive) in some nodes and shifted 

downwards (cheaper) in others, then the dispatched production is weakly lower in at least one 

node with more expensive offers or weakly higher in at least one node with cheaper supply. 

 

One immediate implication of this lemma is that: 
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Corollary 1 (Non-increasing residual demand) If one producer unilaterally increases/decreases 

its offer price, then accepted sales in its node cannot increase/decrease.   

 

The system operator accepts offers in order to minimize stated production costs. Thus for a 

given acceptance volume in a node, a firm cannot increase its chances of being dispatched by 

increasing its offer price. Thus Corollary 1 implies that a producer’s residual demand is non-

increasing.  The next lemma outlines necessary properties of a Nash equilibrium.  

 

Lemma 2. Consider a market where an accepted offer is never paid more than the marginal price 

of its node and never less than its own bid price. In Nash equilibrium, the dispatch must be 

locally efficient and marginal prices of the nodes are locally competitive.   

 

4.1 Nodal pricing 

Below we prove that the nodal pricing design has at least one NE and that all NE results in 

the same competitive outcome.11 It is only offers above and below the marginal prices of nodes 

that can differ between equilibria.   

 

Proposition 1 A market with nodal pricing has one NE where producers offer at their marginal 

cost. All NE result in the same locally efficient dispatch  niN
iq 1 and the same competitive nodal 

prices  N
ii

N
i qCp  .  

 

As the system operator clears the market in order to maximize social welfare when offers 

reveal true costs, we note that the equilibrium dispatch must be efficient. We use the superscript 

N to designate this socially efficient outcome. We refer to the unique equilibrium outcome as the 

                                                 
11 Existence of pure-strategy NE in networks with a finite number of producers is less straightforward. The reason is that a producer in an import-
ing node can find it profitable to deviate from a locally optimal profit maximum by withholding production in order to congest imports and push 
up the nodal price (Borenstein et al., 2000; Willems, 2002; Downward et al., 2010; Holmberg and Philpott, 2012). Such unilateral deviations are 
not feasible in a network with infinitesimally small producers, which makes existence of pure-strategy NE more straightforward. Escobar and 
Jofré (2008) show that networks with a finite number of producers and non-existing pure-strategy NE normally have mixed-strategy NE. 
 
Existence of NE in large games with continuous payoffs has been analyzed by Carmona et al. (2009).   
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network’s efficient dispatch  niN
iq 1   and the network’s competitive nodal prices  niN

ip 1 . Note 

that as the dispatch is locally efficient, the unique equilibrium outcome exactly specifies which 

units are running; production units in node i are running if and only if they have a marginal cost 

at or below  N
ii qC ' . Schweppe et al. (1988), Chao and Peck (1996) and Hsu (1997) and others 

outline methods that can be used to calculate efficient dispatches  niN
iq 1  for general networks.   

 

Existence of the competitive outcome also indirectly establishes existence of a Walrasian 

equilibrium, which has previously been proven for radial (Cho, 2003) and meshed networks 

(Escobar and Jofré, 2008). Proposition 1 proves that all of our NE correspond to the Walrasian 

equilibrium, so in this sense our NE is equivalent to the Walrasian equilibrium in a market with 

nodal pricing. The reason is that the infinitesimal producers that we consider are price takers in 

nodal markets, where all agents in the same node are paid the same market price. 

4.2 Discriminatory pricing 

Discriminatory pricing is different to nodal pricing in that each agent is then paid its 

individual offer price rather than a uniform nodal price. Thus, even if agents are infinitesimally 

small, inframarginal producers can still influence how much they are paid, so they are no longer 

price takers. This means that the Walrasian equilibrium is not a useful equilibrium concept when 

studying discriminatory pricing. This is the reason why we instead consider a large game with a 

continuum of small producers in this paper.   

 

Proposition 2. There exist Nash equilibria in a network with discriminatory pricing. All such NE 

have the following properties: 

1) The dispatched production is identical to the network’s efficient dispatch in each node.  

2)  All production in node i with a marginal cost at or below  N
ii qC  is offered at the 

network’s competitive nodal price  N
ii

N
i qCp  . 

3) Other offers are not accepted and are not uniquely determined in equilibrium. However, it 

can, for example, be assumed that they offer at their marginal cost.       
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Thus, the discriminatory auction is identical to nodal pricing in terms of payoffs, efficiency, 

social welfare and the dispatch. As payoffs are identical for all circumstances, this also implies 

that the long-run effects are the same in terms of investment incentives etc. Note that it is not 

necessary that rejected offers bid at marginal cost to ensure an equilibrium. As producers are 

infinitesimally small, it is enough to have a small finite amount of rejected bids at or just above 

the marginal offer in each node to avoid deviations.  

Finally we analyze how contracts influence the equilibrium outcome. We consider forward 

contracts with physical delivery in a specific node at a predetermined price. For simplicity, we 

consider cases where each infinitesimally small producer either has no forward sales at all or sells 

all of its capacity in the forward market for physical delivery in its own node to consumers.  In 

the real-time market, consumers announce how much more power they want to buy in each node, 

in addition to what they have already bought with contracts, and producers make offers for 

changes relative to their contractual obligations. The system operator accepts changes in 

production in order to achieve a feasible dispatch at the lowest possible net-increase in the stated 

production costs.  

 

Proposition 3. In a real-time market with nodal or discriminatory pricing, the equilibrium 

dispatch is identical to the network’s efficient dispatch and marginal prices of the nodes are 

competitive, for any set of forward contracts that producers have sold with physical delivery in 

their own node.  

 

We will use this result in our analysis of the zonal pricing design, where the first-stage clearing of 

the zonal market can be regarded as physical forward sales. 

4.3 Zonal pricing with counter-trading  

4.3.1. Notation and assumptions 

Zonal pricing with counter-trading is more complicated than the other two designs and we 

need to introduce some additional notation before we start to analyze it. The network is divided 

into zones, such that each node belongs to some zone k. We let Zk be a set with all nodes 

belonging to zone k. To simplify our equations, we number the nodes in a special order. We start 

with all nodes in zone 1, and then proceed with all nodes in zone 2 etc. Thus, for each zone k, 
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nodes are given numbers in some range kn  to kn . Moreover, inside each zone, nodes are sorted 

with respect to the network’s competitive nodal prices N
ip , which can be calculated for the nodal 

pricing design, as discussed in Section 4.1. Thus, the cheapest node in zone k is assigned the 

number kn  and the most expensive node in zone k is assigned the number kn .  

Counter-trading in the second-stage only changes intra-zonal flows. Thus it is important for 

a benevolent system operator to ensure that the inter-zonal flows are as efficient as possible 

already after the first clearing. In the Nordic multi-zonal market, system operators achieve this by 

announcing a narrow range of inter-zonal flows before the day-ahead market opens. In particular, 

flows in the “wrong direction”, from zones with high prices to zones with low prices, due to loop 

flows, are predetermined by the system operator. We simplify the zonal clearing further by letting 

the well-informed system operator set all inter-zonal flows before offers are submitted.  Total net-

imports to zone k are denoted by N
kI . We make the following assumption for these flows, as our 

analysis shows that it leads to an efficient outcome: 

 

Assumption 1:  The system operator sets inter-zonal flows equal to the inter-zonal flows that 

would occur for the network’s efficient dispatch  niN
iq 1 . These inter-zonal flows are announced 

by the system operator before offers are submitted.  

 

Assumption 1 sets all inter-zonal flows. Thus offers to each zonal market can be cleared 

separately at a price where zonal net-supply equals zonal net-exports. We assume that the highest 

potential clearing price is chosen in case there are multiple prices where zonal net-supply equals 

zonal net-exports.12 The clearing price Πk in zone k is paid to all production in the zone that is 

accepted in the zonal clearing. In case intra-zonal transmission-lines are overloaded after the first 

clearing, there is a redispatch where the system operator increases accepted production in import 

constrained nodes and reduces it in export constrained nodes. We consider a market oriented 

redispatch (counter-trading), so all deviations from the first-clearing are settled on a pay-as-bid 

basis. In the counter-trading stage, the system operator makes changes relative to the zonal 

                                                 
12 Normally this choice does not matter for our equilibria. However, it ensures existence of equilibria for degenerate cases when exogenous zonal 
demand and exogenous net-exports happen to coincide with production capacities in one or several nodes for some zone.   
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clearing in order to achieve a feasible dispatch at the lowest possible net-increase in stated 

production costs.   

We consider two versions of the zonal design: a one shot game where the same offers are 

used in the two clearing stages of the market and a dynamic game where agents are allowed to 

make new offers in the counter-trading stage. The first model corresponds to the old pool in 

England and Wales, while the latter model could for example be representative of the reformed 

British market, where producers can first sell power at a uniform zonal price in the day-ahead 

market and then submit a new bid to the real-time market with discriminatory pricing.13 

   

4.3.2. Analysis 

The equilibrium in a zonal market with counter-trading has some similarities with the 

discriminatory auction. But the zonal case is more complicated, as the two clearing stages imply 

that in equilibrium some producers can arbitrage between their zonal and individual 

(discriminatory) counter-trading prices. Thus producers in nodes with low marginal prices will 

play the inc-dec game, i.e. sell all their capacity at the higher zonal price and then buy back the 

capacity at a lower price in the counter-trading stage or produce if the marginal cost is even 

lower. We consider physical markets. This prevents producers from buying power or selling more 

than their production capacity in the zonal market. Thus a producer in a node with a marginal 

price above its zonal price cannot make an arbitrage profit. To maximize their profit in the 

redispatch stage, bids of dispatched production in such import constrained nodes are shifted 

upwards to the node’s competitive nodal price, similar to the case with discriminatory pricing.  

First we consider a static game where producers cannot make new offers to the counter-

trading stage; the same offers are used in the two stages of the zonal market. 

 

                                                 
13 The dynamic model could also represent congestion management in the Nordic market, where the system operator does not accept offers in the 
zonal clearing of the real-time market if these offers will cause intra-zonal congestion that needs to be countertraded in the second-stage. This is to 
avoid unnecessary costs for the system operator and unnecessary payments to producers. In our model where there is no uncertainty, the zonal 
day-ahead market then takes the role of the first-stage of the real-time market. The zonal real-time market becomes obsolete as without uncertain-
ty, the day-ahead market has already cleared the zones. In this case offers to the real-time market, which are allowed to differ from day-ahead 
offers, are only used in the discriminatory counter-trading stage. Proposition 5 shows that under our idealized assumptions switching to the Nordic 
version of zonal congestion management is in vain, producers still get the same payoffs and the system operator’s counter-trading costs are un-
changed.    
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Proposition 4. Under Assumption 1 there exists Nash equilibria in a zonal market with counter-

trading and the same offers in the zonal and countertrading stages. All of them have the following 

properties: 

1)  The zonal price in zone k is given by  
N

km
*
k pΠ  , where: 
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   (2)    

2) As in the nodal pricing and pay-as-bid designs, the dispatched production in each node is 

given by the network’s efficient dispatch, N
iq . 

3)  In strictly export-constrained nodes kZi , such that N
ip < *

kΠ , production with marginal 

costs at or above N
ip  are offered at the network’s competitive nodal price  N

ii
N
i qCp   . For 

strictly import-constrained nodes in zone k where N
ip > *

kΠ  , all production with a marginal cost 

at or below  N
ii qC   is offered at  N

ii
N
i qCp  .  

4) Other offers are not uniquely determined in equilibrium. However, it can be assumed that 

they offer at their marginal cost.  

  

Equation (2) defines a marginal node, where the competitive nodal price equals the zonal 

price. Next we show that the equilibrium outcome does not change in the dynamic game, where 

agents are allowed to up-date their offers in the counter-trading stage.  

 

Proposition 5. Under Assumption 1, it does not matter for payoffs or the equilibrium outcome of 

the zonal market whether producers are allowed to up-date their offers in the counter-trading 

stage.  

 

We can now conclude that the dispatch for zonal pricing with counter-trading is the same as 

for nodal pricing and discriminatory pricing. Thus, in the short run, the designs’ efficiencies are 

equivalent. This also confirms that the system operator should set inter-zonal flows equal to the 

corresponding flows in the competitive nodal market, as assumed in Assumption 1, if it wants to 

maximize social welfare. However, it directly follows from Equation (2) and Propositions 4 and 5 
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that producers in strictly export-constrained nodes receive unnecessarily high payments in a zonal 

pricing design: 

  

Corollary 2. In comparison to nodal pricing, the total extra payoff from the system operator to 

producers in zone k equals:    







1km

ni
i

N
i

N
km

k

qpp  under Assumption 1.  

 

Even if zonal pricing is as efficient as nodal pricing in the short run, the extra payoffs will 

cause welfare losses in the long run. Production investments will be too high in strictly export-

constrained nodes where N
ip < Πk. In addition, inflexible production that cannot take part in the 

real-time market are paid the zonal price in the day-ahead market. Thus, the accepted inflexible 

supply in this market is going to be too high in strictly export-constrained nodes and too low in 

strictly import-constrained nodes.      

 

5. EXAMPLE – DISCRIMINATORY AND ZONAL PRICING 

In the following section, we illustrate the equilibria for the discriminatory and zonal pricing 

designs. The example that we use has an identical structure as the nodal pricing case that we 

described in section 2. Again, we consider a two-node network with one constrained 

transmission-line in-between. In both nodes producers are infinitesimally small and demand is 

perfectly inelastic. In each node the marginal cost is equal to local output and the production 

capacity is 15 MW. In node 1, demand is 5 MW; in node 2 demand is 18 MW. The transmission 

line between these nodes is constrained and can carry only 4 MW.  Demand in node 2 exceeds its 

generation possibilities so the missing electricity must be imported from the other node.     

The discriminatory design will result in the equilibrium offers presented in Fig. 2.  In this 

design, generators are paid according to their bid. Knowing this and having perfect information, 

producers who want to be dispatched will bid the competitive nodal price of their node, to ensure 

that they will be dispatched at the highest possible price. Thus, in node 1, they will bid 9 and in 

node 2 they will bid 14. Producers who do not want to be dispatched may, for example, bid their 

marginal costs, which are higher than the nodal prices of the respective nodes. The dispatch will 

be the same as under nodal pricing design. Although producers will have different bidding 
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Node 1: 
Due to transmission constraints, producers in node 1 know that after the two stages, the 

system operator can accept a maximum of 9 MW in their node. Therefore, producers with a 

marginal cost at or below the competitive nodal price, offer at or below the competitive nodal 

price as they will, in any case, be accepted and paid the zonal price, which is 14. The remaining 6 

units in node 1 have a marginal cost above the competitive nodal price. They will bid low in 

order to be accepted in the first stage and be paid the zonal price of 14. But due to the 

transmission constraint, they will have to buy back their supply at their own bidding price in the 

second round. As they are interested in maximizing their profit, they want this price difference to 

be as large as possible, as long as they will not be chosen to produce. Therefore, they bid the 

competitive nodal price 9 so that they will be “paid” not to produce and get 14 – 9 =5 (the 

rectangle area in the figure 4). There are no profitable deviations from these bids for 

producers from node 1. In particular, we note that no infinitesimally small producer in 

node 1 can unilaterally increase the zonal price at stage 1 above 14, as there are 6 units (in node 

2) that offer their production at the price 14 without being accepted in the zonal market. 

 

Node 2: 

Due to the transmission constraint, producers in node 2 know that the system operator 

needs to dispatch at least 14 units of electricity in their node after the two stages. Thus, all low-

cost generators who want to be dispatched know that all offers at or below 14, the competitive 

nodal price of node 2, will be accepted. 8 units are accepted in the zonal clearing and another 6 

units are accepted in the counter-trade stage. The latter units are paid as bid and accordingly, they 

maximize their profit by offering their supply at 14, the highest possible price for which they are 

going to be accepted. Producers that do not want to be dispatched at all will bid above 14, for 

example their marginal cost. In this way, 14 units will be produced in node 2. There are no 

profitable deviations from these strategies for producers in node 2.  

 A comparison of these two examples and the nodal pricing example in Section 2 illustrates 

that although the bidding strategies are different, the dispatch is the same in all scenarios. 

However, the last design – zonal pricing with counter-trading – results in additional payments 

that affect the long-term investment incentives.   

It is interesting to note that the zonal price in our example is weakly higher than the nodal 

prices in both nodes. This is always the outcome in two-node networks where the production 
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capacity in the cheapest node is not sufficient to meet the total demand, so that it is the marginal 

cost in the most expensive node that sets the zonal price. The system operator will typically use 

tariffs to pass its counter-trading cost on to the market participants, so it is actually quite plausible 

that switching to nodal pricing will lower the cost for all electricity consumers, including the ones 

in the high cost node.      

 

6. CONCLUSIONS AND DISCUSSION 

We consider a general electricity network (possibly meshed), where nodes are connected by 

capacity constrained transmission lines. In our game-theoretical model producers are 

infinitesimally small and demand is certain and inelastic. We find that the three designs, nodal, 

zonal with countertrading and discriminatory pricing, lead to the same socially efficient dispatch. 

In addition, payoffs are identical in the pay-as-bid and nodal pricing designs. However, in the 

design with zonal pricing and countertrading, there are additional payments from the system 

operator to producers who can make money by playing the infamous inc-dec game. It does not 

matter for our results whether we consider a static game where producers’ bids are the same in 

the zonal and counter-trading stages or a dynamic game where producers are allowed to update 

their offer curves in the counter-trading stage.  

Similar to Dijk and Willems’ (2011) two-node model, our results for the zonal market imply 

that producers overinvest in export-constrained nodes. While zonal pricing is good for producers, 

consumers would gain overall from a switch from zonal to nodal pricing. In two-node markets, it 

is normally the case that all consumers (also the ones in the most expensive node) would gain 

from a switch to nodal pricing. In addition to the inefficiencies implied by our model, zonal 

pricing also leads to inefficiencies in the operation of inflexible plants with long ramp-rates. They 

are not allowed to trade in the real-time market, so they have to sell at the zonal price in the day-

ahead market. The consequence is that too much inflexible production is switched on in export 

constrained nodes, where the competitive nodal price is below the zonal price, and too little in 

import constrained nodes, where the competitive nodal price is above the zonal price. Related 

issues are analyzed by Green (2007). 

Another result from our analysis is that there is a significant number of firms that make 

offers exactly at the marginal prices of the nodes in the zonal and pay-as-bid designs, which is not 

necessarily the case under nodal pricing. This supports the common view that the zonal design is 
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more liquid. Although, the standard motivation for this is that the zonal design has less market 

prices and thus fewer products to trade, and hence liquidity can be concentrated on these. Still it 

is known from PJM that it is also possible to have a liquid market with nodal pricing (Neuhoff 

and Boyd, 2011).  

However increased liquidity can have more drawbacks than advantages. As illustrated by 

Anderson et al. (2009), the elastic offers, especially in the pay-as-bid design but also in the zonal 

design, mean that getting its offer slightly wrong can have a huge effect on a firm’s dispatch. This 

increases the chances of getting inefficient dispatches when demand or competitors’ output is 

uncertain, while the efficiency of the nodal pricing design is more robust to these uncertainties.  

Similarly, Green (2010) stresses the importance of having designs that can accommodate 

uncertainties from intermittent power.  

There are other drawbacks with the zonal design.  We consider a benevolent system 

operator that uses counter-trading to find the socially optimal dispatch. However, even if counter-

trading is socially efficient, it is costly for the system operator itself. Thus strategic system 

operators have incentives to find the feasible dispatch that minimizes counter-trading costs. In 

practice, counter-trading is therefore likely to be minimalistic and less efficient than in our 

framework. Moreover, Bjørndal et al. (2003) and Glachant and Pignon (2005) show that network 

operators have incentives to manipulate inter-zonal flows in order to lower the counter-trading 

cost (and market efficiency) further. In our analysis we assume that the system-operator has full 

control of the system and that it can set  inter-zonal flow as efficiently as under nodal pricing, but 

in practice market uncertainty, coordination problems and imperfect regulations lead to 

significantly less efficient cross-border flows (Leuthold, 2008; Neuhoff, et al., 2011; Ogionni and 

Smeers 2012).  Studies by Hogan (1999), Harvey and Hogan (2000), and Green (2007) indicate 

that nodal pricing is also better suited to prevent market power. 
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APPENDIX A: TECHNICAL LEMMAS 

 

Lemma 3. m(k) is uniquely defined by Equation (2). 

Proof: 

 We first note that the network’s efficient dispatch is feasible as the inter-zonal flows are efficient, 
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in n, because 0iq . Thus Equation (2) always has a unique solution. ■ 

 

The following two technical lemmas are used to prove that all Nash equilibria must result in the 

same dispatch.  

 

Lemma 4. If there is a set of nodal offer functions   n

ii qo 1
*ˆ  (not necessarily increasing) that 

results in a locally efficient dispatch with the nodal output  and locally competitive 

marginal prices, then  any set of strictly increasing nodal offer functions   n

ii qo 1
ˆ  , such that 

   *** ˆˆ iiii qoqo   , will result in the same dispatch.  

 

Proof: First, consider the case when offers   n

ii qo 1
*ˆ   are also strictly increasing in output. In this 

case, the objective function (stated welfare) is strictly concave in the supply, qi. Moreover, the set 

of feasible dispatches is by assumption convex in our model. Thus, it follows that the objective 

function has a unique local extremum, which is a global maximum (Gravelle and Rees, 1992). 

Thus the system operator’s dispatch can be uniquely determined. It follows from the necessary 

Lagrange condition that the unique optimum is not influenced by changes in node i’s offers 

below and above the quantity *
iq , as long as offers are strictly increasing in output. Thus the 

 n

iiq 1
*



 ni ,,1
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dispatch must be  the same for any set of strictly increasing nodal offer functions   n

ii qo 1
ˆ  , such 

that    *** ˆˆ iiii qoqo   .  

 With perfectly elastic segments in the offer curves   n

ii qo 1
*

  there are output levels, for 

which   0* 


qoi in some node i. This means that the objective function is no longer strictly 

concave in the supply. However, one can always construct strictly increasing curves that are 

arbitrarily close to curves with perfectly elastic segments. Moreover, the system operator’s 

objective function is continuous in offers. Thus, we can use the same argument as above with the 

difference that the system operator may sometimes have multiple optimal dispatches, in addition 

to the dispatch above, for a given set of offer curves   n

ii qo 1
*ˆ  .14 However, the same dispatch as 

above is pinned down by the additional conditions that the dispatch is locally efficient and 

marginal prices locally competitive.  

Finally, we realize that there could be cases with non-monotonic offers   n

ii qo 1
*ˆ  . However, 

the dispatch is locally efficient and marginal prices locally competitive, so such offers would 

have to satisfy the following properties    *** ˆˆ iii qoqo   for *
iqq   and    *** ˆˆ iii qoqo   for *

iqq     

.  Thus as the system operator sorts offers into ascending order, we can go through 

the arguments above for sorted offers and conclude that the statement must hold for such cases as 

well. ■ 

 

Lemma 5. If two sets of nodal offer functions both result in a locally efficient dispatch with 

locally competitive marginal prices, then the two resulting dispatches must be identical.  

Proof: Make the contradictory assumption that there are two pairs of offer functions with a 

corresponding dispatch,      n

ii

n

ii qqo 1
*

1
* ,ˆ   and      n

ii

n

ii qqo 11,ˆ 



 , that satisfy the stated 

properties, except that     n

ii

n

ii qq 11
*




  . Lemma 4 states how these offers can be adjusted into 

strictly increasing offer curves without changing the dispatch. We make such adjustments to get 

                                                 
14 Multiple optimal dispatches for example occur if several units in a node have the same stated marginal cost and some but not all of these units 
are accepted in a dispatch that minimizes stated production costs.    

 ni ,,1

 ni ,,1
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two sets of adjusted nodal offer functions,   n

ii qo 1
*ˆ   and   n

ii qo 1ˆ 
  that are identical in nodes with 

the same dispatch and non-crossing in the other nodes.  

By assumption we have    ***ˆ iiii qCqo    and      iiii qCqô . The  node’s marginal cost 

curve is strictly increasing in output. Thus adjusted offers   n

ii qo 1
*ˆ   must be above (more 

expensive) compared to adjusted offers   n

ii qo 1ˆ 
  in all nodes where  ii qq *  . Similarly, adjusted 

offers   n

ii qo 1
*ˆ   must be below (cheaper) compared to adjusted offers   n

ii qo 1ˆ 
  in all nodes 

where  ii qq* . However, this would violate Lemma 1. Thus, the dispatches  n

iiq 1
*

  and  n

iiq 1
  

must be identical. ■ 

 

 

APPENDIX B: OTHER PROOFS 

 

Proof of Lemma 1 

We let the old dispatch refer to the feasible dispatch   n

i
old
iq 1  that maximized stated social welfare 

at old offers when supply in node i is given by  ii qo . Let  ii qo denote the shift of the supply 

curve, so that    iiii qoqo   is the new supply curve in node i. The new dispatch refers to the 

feasible dispatch   n

i
new
iq 1  that maximizes stated social welfare for new offers. Thus for new 

offers,    iiii qoqo  , the new dispatch  n

i
new
iq 1  should result in a weakly higher social welfare 

than the old dispatch  n

i
old
iq 1 , i.e. 

            .
1 01 0

  



n

i

q

ii

n

i

q

ii

old
i

new
i

dxxoxodxxoxo       (3) 

Now, make the contradictory assumption that in comparison to the old dispatch, the new dispatch 

has strictly more production in all nodes where offers have been shifted upwards (more 

expensive) and strictly less production in all nodes where offers have been shifted downwards 

(cheaper). Thus new

i
q > old

i
q  when  ii qo ≥0 with strict inequality for some  new

i
qqi ,0 , and new

i
q <

old

i
q  when  ii qo ≤0 with strict inequality for some  old

i
qqi ,0 , so that 
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        



n

i

q

i

n

i

q

i

old
i

new
i

dxxodxxo
1 01 0

.        (4) 

But summing Equation (3) and Equation (4) yields 

        



n

i

q

i

n

i

q

i

old
i

new
i

dxxodxxo
1 01 0

,         (5) 

which is a contradiction since, by definition, the old dispatch  n

i
old
iq 1 is supposed to maximize 

stated welfare at old offers. ■       

 

Proof of Lemma 2 

The statement follows from that: 1) offers cannot be dispatched at a price below their marginal 

cost in equilibrium, and that 2)  all offers from production units with a marginal cost at or below 

the marginal price of  a node must be accepted in equilibrium. If 1) did not hold for some firm 

then it would be a profitable deviation for the firm to increase its offer price to its marginal cost. 

2) follows from that there would otherwise exist some infinitesimally small producer in the node 

with a marginal cost below the marginal price, but whose offer is not dispatched. Thus, it would 

be a profitable deviation for such a producer to slightly undercut the marginal price and we know 

from Corollary 1 that such a deviation will not decrease the dispatched production in its node, so 

the revised offer will be accepted. ■ 

 

Proof of Proposition 1 

We note that the objective function (stated welfare) in Equation (1) is continuous in the nodal 

output qi when offers are at the marginal cost. Moreover, the feasible set (the set of possible 

dispatches) is closed, bounded (because of capacity constraints) and non-empty. Thus, it follows 

from Weierstrass’ theorem that there always exists an optimal feasible dispatch when offers 

reflect true costs (Gravelle and Rees, 1992). 

 Next, we note that no producer has a profitable deviation from the competitive outcome. 

Marginal costs are continuous and strictly increasing. Hence, it follows from Corollary 1 that no 

producer with an accepted offer can increase its offer price above the marginal price of the node 

and still be accepted, as its offer price would then be above one of the previously rejected offers 
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in the same node.15 No producer with a rejected offer would gain by undercutting the marginal 

price, as the changed offer would then be accepted at a price below its marginal cost. Thus, there 

must exist an NE where all firms offer to produce at their marginal cost. Offers above and below 

the marginal price of a node can differ between equilibria. But it follows from Lemma 2 and 

Lemma 5 in Appendix A that all NE must have the same locally efficient dispatch and the same 

locally competitive marginal prices, so nodal prices, which are set by marginal prices, must also 

be the same.  ■ 

 

Proof of Proposition 2 

Proposition 1 ensures existence of the network’s efficient dispatch and competitive nodal prices. 

Both nodal and discriminatory pricing are markets where an accepted offer is never paid more 

than its node’s marginal price and never less than its own bid price, so in both cases the 

equilibrium dispatch must be locally efficient and marginal prices of the nodes are competitive in 

equilibrium, because of Lemma 2.  Thus statement 1) follows from Lemma 5 in Appendix A.  In 

a discriminatory market it is profitable for a producer to increase the price of an accepted offer 

until it reaches the marginal price of its node, which gives statement 2). Finally, we realise that 

there are no profitable deviations from the stated equilibrium if rejected offers are at their 

marginal cost.■ 

 

Proof of Proposition 3 

We note that the stated production cost of contracted sales is a constant. Thus we can add it to the 

objective function of the system operator’s optimization problem without influencing the optimal 

dispatch. The set of feasible dispatches is not influenced by producers’ forward sales. Thus to 

solve for the optimal dispatch we can add producers’ forward sales to their offered quantities, so 

that offers include contracted quantities instead of being net of contracts, and then solve for the 

feasible dispatch that minimizes the total stated production costs as defined by Equation (1). 

Rewriting the dispatch problem in this way, implies that Lemma 1, Corollary 1, Lemma 4 and 

Lemma 5 in Appendix A also apply to situations with contracts. Thus the stated result would 

follow if we can prove that the dispatch must be locally efficient and marginal prices of the nodes 

                                                 
15 Also note that the last unit in a node cannot increase its offer above its marginal cost due to the reservation price  iqCp ' . 
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are competitive in equilibrium, also for contracts.  Similar to the proof of Lemma 2, this follows 

from that: 1) a production unit cannot be dispatched at a real-time price below its marginal cost in 

equilibrium, and that 2) all production units with a marginal cost at or below the marginal real-

time price of its node must be dispatched in equilibrium. The proof of Lemma 2 explains why 1) 

must hold for uncontracted firms. If 1) would not hold for a contracted firm, then it would be a 

profitable deviation for the firm to increase its offer price (to buy back the contract and avoid 

being dispatched) to a price above the marginal real-time price and below its marginal cost. It 

follows from Corollary 1 that such a unilateral deviation cannot increase the nodal production in 

the contracted firm’s node. Thus its offer to buy back the contract is accepted at a price below its 

marginal cost, which is cheaper than to follow the contracted obligation and produce at marginal 

cost. 2) follows from that there would otherwise exist some infinitesimally small producer in the 

node with a marginal cost below the marginal price, but whose offer is not dispatched. We 

already know from the proof of Lemma 2 that such a producer would find a profitable deviation 

if it was uncontracted. We also realize that a producer that has sold its production forward and 

that has a marginal cost below the marginal price would lose from bidding above the marginal 

price (to buy back the contract), so that its unit is not dispatched. It would be a profitable 

deviation for such a producer to lower its bid to its marginal cost. It follows from Corollary 1 that 

such a change would not decrease accepted production. Thus it increases its payoff by at least the 

difference between its nodal marginal price and its marginal cost. ■ 

 

 

Proof of Proposition 4 

Existence of a competitive equilibrium in the nodal design follows from Proposition 1.  

Assumption 1 restricts inter-zonal flows to be efficient. However, we realize from the proof of 

Proposition 3 that this extra constraint does not change the statement in Proposition 3. A 

producer’s accepted offer in the zonal market is equivalent to a forward position with physical 

delivery in its node. Thus it follows from Proposition 3 that, independent of the zonal clearing, 

the equilibrium dispatch is identical to the network’s efficient dispatch and marginal prices of the 

nodes are competitive in the counter-trading stage. This gives the unique dispatch  niN
iq 1  as 

stated in 2). The counter-trading stage uses discriminatory pricing, but all agents want to trade at 
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the best price possible, so all accepted offers in the counter-trading stage are marginal offers at 

the network’s competitive nodal prices.   

Consider a zone k with its associated nodes kZn  or equivalently  kk nnn ,, . A node 

inside zone k where the network’s competitive nodal price N
ip  is strictly below the zonal price 

Πk is referred to as a strictly export constrained node. Price-taking producers in such nodes want 

to sell as much production as they can at the zonal price, and then buy back production in the 

discriminatory counter-trading stage at the lower price N
ip  or produce at an even lower marginal 

cost. Thus all capacity in a strictly export constrained node i is offered at or below N
ip < Πk. As 

the real-time market is physical, producers in strictly import-constrained nodes of zone k (where 

the network’s competitive nodal price N
ip  is strictly above the zonal price Πk) are not allowed to 

first buy power at a low price in the zonal market and then sell power at N
ip  in the counter-

trading stage. Thus they neither buy nor sell any power in the zonal market, so they make offers 

above Πk. We can conclude from the above reasoning that a marginal offer at the zonal price 

cannot come from a production unit that is located in a node that is strictly export or import 

constrained. In equilibrium there must be at least one marginal node m with k
N
m Πp  . Recall that 

nodes have been sorted with respect to competitive nodal prices and that that the highest clearing 

price is chosen in case there are multiple prices where zonal net-supply equals zonal net-exports. 

Thus we can define one marginal node by Equation (2). 16 It follows from Lemma 3 that this 

equation uniquely sets the zonal price  
N

kmk pΠ  . 

 Offers in strictly import constrained nodes, which are above the zonal price, are never 

accepted in the first stage of the zonal market. For these nodes, it is the rules of the counter-

trading stage that determine optimal offer strategies. Thus, the auction works as a discriminatory 

auction, and we can use the same arguments as in Proposition 2 and Proposition 3 to prove the 

second part of statement 3).  

                                                 
16 It is possible that nodes with numbers adjacent to m(k) have the same competitive nodal prices as node m(k), but it will not change the analysis. 
It is enough to find one marginal node to determine the zonal price. As an example, it follows from Proposition 1 and our cost assumptions that in 
the special case when zonal demand equals the zonal production capacity plus efficient imports, then the competitive nodal price equals the price 

cap in all nodes. Thus any node could be chosen to be the marginal node, but kn is the most natural extension of the first part of Equation (2).       
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Production units in a strictly export-constrained node that have a higher marginal cost than 

their competitive nodal  price can sell their power in the zonal market at the zonal price and then 

buy it back at a lower offer price in the counter-trade stage. Thus, to maximize profits this power 

is offered at the lowest possible price, for which offers are not dispatched, i.e. at the marginal 

price of the node. This gives the first part of statement 3).  Non-dispatched production units 

would not gain by undercutting the marginal price. Offers that are dispatched in strictly export-

constrained nodes are paid the zonal price. It is not possible for one of these units to increase its 

offer price above N
ip < Πk and still be dispatched, as non-dispatched units in such nodes offer at 

N
ip . Moreover, it is weakly cheaper for dispatched units to produce instead of buying back 

power at N
ip . Thus, they do not have any profitable deviations. Accordingly, the stated offers 

must constitute a Nash equilibrium.  ■ 

 

 

Proof of Proposition 5 

We solve the two-stage game by backward induction. Thus we start by analysing the 

countertrading stage. A producer’s accepted offer in the zonal market is equivalent to a forward 

position with physical delivery in its node. Thus it follows from Proposition 3 that, independent 

of the zonal clearing, the equilibrium dispatch is identical to the network’s efficient dispatch and 

marginal prices of the nodes are competitive in the counter-trading stage. The counter-trading 

stage uses discriminatory pricing, but all agents want to trade at the best price possible, so all 

accepted offers in the counter-trading stage are marginal offers at the network’s competitive nodal 

prices.      

We calculate a subgame perfect Nash equilibrium of the game, so rational agents realise 

what the outcome of the second-stage is going to be, and make offers to the zonal market in order 

to maximize profits. Thus, similar to the one-stage game, all production capacity in strictly 

export-constrained nodes kZi , such that N
ip < Πk, is sold at the zonal price. As before, 

production capacity in strictly import constrained nodes maximize their payoff by selling no 

power in the zonal market; all production that is dispatched in strictly import constrained nodes is 

accepted in the counter-trading stage.  As in the one-stage game, the zonal price in zone k must be 

set by the marginal price of some marginal node m as defined in Equation (2). Otherwise there 
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must be some offer to the zonal market from a production unit in a strictly export constrained 

node (with N
ip < Πk ) that is rejected, and which would find it profitable to slightly undercut the 

zonal price. All production units that are dispatched in marginal nodes are sold at the zonal price. 

As in the one-stage game, there are always rejected offers from units in marginal nodes that can 

be placed at or just above the zonal price. This rules out that profitable deviations for production 

units in marginal nodes. Thus all agents get the same payoffs as the game in Proposition 4, where 

the same offers were used in the zonal and countertrading stages. ■ 

 

 

 

 


